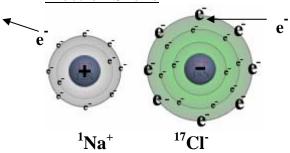

Atoms and Atomic Structure

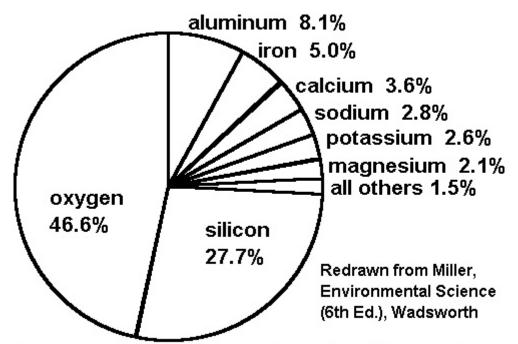
- 1) Atoms
 - a) **Atom** = smallest unit of an element
 - i) 1 drop of water contains 1 million million billion atoms $(1x10^{21})$
 - b) **Element** = substance that cannot be decomposed into another substance by chemical or physical means.
 - i) Example: burning, breaking
- 2) 109 elements --- 92 naturally occurring
- 3) 1 or 2 letter "atomic symbols" arranged in periodic table
 - a) Some obvious: O, H, Si, Al
 - b) Some not obvious: **Fe** (iron, L. *ferrum*), **Pb** (lead, L. *plumbum*), **Ag** (silver, Gk. Argyros [Argentina]), **Au** (gold, L. *aurum*)


Atomic Structure

- 1) Bohr Model
 - a) Three sub-atomic particles:

Particle	Charge
Proton	+
Electron	-
Neutron	-none-

Electron Shells


Chemical Bonds

- 1) **Ionic** electrostatic attraction between ions (dating) "Electron transfer"
- 2) **Covalent** sharing of "valence" electrons (*marriage*)
 - a) Strong bonds: many mineral, including diamonds

These next two we will not worry about

- 3) **Metallic** (rare) too many orbital vacancies to fill, (*commune*) nuclei packed tight in a "sea" of electrons
 - a) Good conductor of heat and electricity
 - b) Malleable (hammer out flat) mallet=hammer
 - c) Opaque
- 4) Van der Waals (rare) polarized molecules attracted to one another

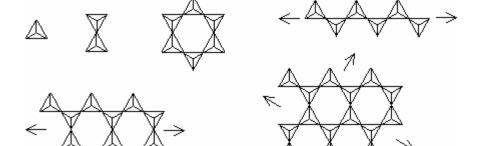
8 Elements make up 98.5% of the earth by weight

% by weight of elements in Earth's crust

Mineral = a naturally occurring, inorganic solid with a definite chemical composition and orderly internal atomic arrangement.

Mineral Groups

<u>Silicates:</u> Most common rock-forming minerals are silicates. A combination of oxygen and silica that form silicon-oxygen tetrahedron (SiO₄)


Independent tetrahedra — olivine

Single chain — pyroxenes

Double chain — amphiboles

Sheet silicates — micas

Framework silicates — quartz and feldspar

Carbonates: have CO₃ polyatomic ion – calcite CaCO₃ and dolomite

Oxides: oxygen – corundum, hematite and magnetite (ice!)

<u>Sulfides:</u> S_2 – galena and chalcocite

Sulfates: SO₄ – gypsum, barite

Native elements: gold, silver, copper, diamond

Phosphates: PO₄ – apatite

Halides: "salts" - halite, fluorite